
Proposed Pattern Finding
Framework

Jack Carlton
University of Kentucky



Information Framework



EventPatterns

Member Variables:
- Set of Pattern classes

Methods:
- Anything for event level pattern info, 
examples:

- getPatterns()

Notes:
This is effectively just a wrapper around 
a set of patterns but provides structure 
to add more 
(ex. Write to fRecEvent method)

π
μ e

π

e



Pattern

Member Variables:
- Set of Vertex classes

Methods:
- Anything for pattern level info, 
example:

- getVertices()

Notes:
This is effectively just a wrapper around 
a set of vertices but provides structure 
to add more

π
μ e



Vertex

Member Variables:
- Set of Tracklet† classes
- PatternCreator tags (json map or similar)

Methods:
- Anything for vertex level info, examples:

- getTracklets()

Notes:
This is effectively just a wrapper around a 
set of tracklets but provides structure to 
add more

π
μ



Tracklet†

Member Variables:
- Hits (or endpoints only?)
- Fitter function (or abstract class?)
- Fit results (json map or similar)
- In/out tracklet boolean?
- VertexCreator tags (json map or similar)

Methods:
- Anything for tracklet level pattern info, examples:

- getEndpoints()
- fit()

Notes:
We may need a “PatternFinderTracklet” object or 
similar to wrap around what Jessie gives us.

† This will likely be a wrapper around what comes out of the tracklet 

finding algorithm, not the actual tracklet from tracklet finding

π



Algorithm Framework



PatternFindingHelpers (Helper class)

Member Variables:
- VertexCreator abstract class
- PatternCreator abstract class

Methods:
- formVertices(set<Tracklets>)
- formPatterns(set<Vertices>)

Notes:
More or less just a container for logic to 
create patterns. Has member variables 
to “hot swap” algorithms. π μ e

π
e

formVertices(set<Tracklets>)

formPatterns(set<Vertices>)



VertexCreator

Member Variables:
- …

Methods:
- Virtual formVertices(set<Tracklets>)

Notes:
Can implement any algorithm with any 
parameters needed by creating a class 
derived from VertexCreator.

formVertices(set<Tracklets>)



PatternCreator

Member Variables:
- …

Methods:
- Virtual formPatterns(set<Vertex>)

Notes:
Can implement any algorithm with any 
parameters needed by creating a class 
derived from PatternCreator.

π μ e

π
e

formPatterns(set<Vertices>)



Pattern Finding Playground

● Started creating python framework 
for testing algorithms

○ Github repo
○ Using python allows for quicker testing, 

switching, and validation of algorithms 
we design (from a development 
perspective)

● Next steps:
○ Test and develop algorithm in python
○ Port into C++ simulation framework

https://www.google.com/url?q=https://github.com/jaca230/pattern_finding_playground&sa=D&source=editors&ust=1746119729913933&usg=AOvVaw17rxB-rXCxARy-XLEwP1AQ


Auxiliary Slides



formVerticies Method (vague) Ideas

● Could treat it as clustering of 
endpoints. Let endpoints have 
form:
(x,y,z,E,t, … whatever else …)

○ Kmeans? See how endpoints get 
grouped?

● Similarly, could define some 
“measure”

Kmeans groupings k=3 for endpoints (x,y,z)


